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We introduce the velocity/ of stagnation points as a means to characterize and measure statistical persis-
tence of streamlines. Using theoretical arguments, direct numerical simuléfibi®, and kinematic simula-
tions (KS) of three-dimensional isotropic turbulence for different ratios of inner to outer length dcatesf
the self-similar range, we show that a frame exists where the avévage0, that the rms values of accelera-
tion, turbulent fluid velocity, ani¥; are related bya’/u’2~ (V4/u’)(L/ 7)?3*, and thatv./u’ ~ (L/ 7)% with
g=-1/3 in Kolmogorov turbulenceg=-1/6 in current DNS, and=0 in our KS. The statistical persistence
hypothesis is closely related to the Tennekes sweeping hypothesis.

DOI: 10.1103/PhysRevE.71.015301 PACS nun®)erd7.27.Ak, 47.27.Qb, 47.27.Gs, 92.10.Lq

Accelerations are central to fluid flow. Acceleration statis-is the one where the mean fluid velocity vanishes. The pur-
tics are central to turbulence dynamics, turbulent mixing, angbose of this paper is to mathematically formulate the statis-
transport, and are also important where the turbulence conical persistence of streamlines as well as the statistical per-
trols droplet growth, chemical reactions, combustion, andistence hypothesigstatistical persistence of streamlines
other processe@.g.,[1,2]). A key statistic is the acceleration maximized in a well-chosen framend to argue that, in

variance. Its value and scaling with Reynolds number argsotropic turbulence, they are both increasingly valid for in-
essential to stochastic Lagrangian models and to Lagrangiafteasing Reynolds number.

probability density-function models of turbulent diffusion if  |; is the persistence of highly curved diverging stream-
these models are to incorporate finite Reynolds number efjnes around straining stagnation points that is important for
fects[2]. In this paper we argue that the Reynolds numbet,ipjent diffusion, and it is therefore critical to consider the
scaling of the turbulence acceleration statistics, in partlculagpeed with which stagnation points move in space. Given an
the acceleration variance, are also important as measures é’lfbitrary frame of reference, the fluid velocityat a stagna-

the statistical persistence of streamlines. tion points(t) at timet vanishes, i.e.u(s,t)=0, and remains
The persistence of streamlines is central to turbulent paigy ¢q; 55 long as this stagnation point exists. Hence, during

diffusion [3-6]. It may also be important for one-particle y,q stagnation point's lifetime, 0=d/dtu(s,t)=du/ at
two-time Lagrangian turbulent statisti¢g]. If streamlines +V,- VU at positions and timet, andV,= ds/dt is the stag-

are persistent enough in time, fluid element trajectories APration point velocity. The fluid acceleration is definedaas

proximately follow them for significantly long times. Hence, — ju/dt+u-Vu at all positionsx and timest. Settingx=s
initially close fluid element pairs typically separate whenWe obtain ' '

they encounter a region of highly curved diverging stream-

lines around a straining stagnation point. However, stream- a=-V,-Vu (1)
lines and their persistence are not Galilean invariant. This ] . ] )
issue motivated6] to suggest that the dependence of turbu-at any timet and any stagnation poistt) of the flow. Using
lent diffusion on streamline structure fully emerges only inCramer’s rule, and assuming that @et/ dx, du/dy,du/ dz)
the frame of reference where streamline persistence is maxit 0, this equality can be inverted,

mized in some statistical sense. The assumption that such a

frame exists, and that the statistical persistence of the stream- {de(ala_u,a_u) e<0_u,a'ﬁ_u), e(&_u,a_ulaﬂ
line topology in this frame is long enough to leave its defin- Jy dz IX dz JIxX dy

ing imprint on turbulent diffusion, is termed “statistical per- " * Jdu du du

sistence hypothesi$].” This is a powerful hypothesis as it e(ﬂ?yﬂ)

leads to predictions supported by DNS and KS suchyas

=2d/Ds (see [5,6]), which relate the Richardson pair- (2)
diffusion exponent y (a Lagrangian quantily in
d-dimensional turbulence to the fractal dimensiBpof the
spatial distribution of stagnation pointan Eulerian quan-
tity) in the privileged frame of the statistical persistence hy-
pothesis. For isotropic turbulende] argued that this frame

Note that relation$l) and(2) hold in any frame of reference.
What changes with frame is the number and positions of
stagnation point$where these relations hold
These relations are kinematic and are the fundamental

link we use here between accelerations and the persistence of
stagnation points measured By. We formulate the concept
of statistical persistence of streamlines on the basi€lpf

*Permanent address: Department of Mechanical Engineeringdssuming, as is reasonable in fully developed isotropic tur-
Kyoto University, Kyoto 606-8501, Japan. bulence[8], that the kinetic-energy dissipation rate per unit
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mass.e, scales as’®/L (whereu’ is the turbulence velocity V./u’~ (L/ %) Y®in that range. This also means that stagna-
fluctuations rms, and is an outer length scale of the turbu- tion points become increasingly persistent as Reynolds num-
lence and that the velocity gradients i{1) scale with the ber increases, but at a rate slower than that of Kolmogorov
inner length scalen and the small-scale velocity,  turbulence. Defining an exponerf, by

~ (em)'3, then the acceleration rme is related to the rms

V; of Vg by La'/u'2 ~ (LI )23 ~ Re-* %2 (5)
Ve~ a', (3)  [where Rg~(L/7)?? has been usédit follows from (4)

wherer,~ n/u,, or equivalently that (5) is equivalent to
La'/u'? ~ (Vu')(LIn)?3. (4) VU ~ (LI7)d ~ REY% (6)

Strictly, @’ is the acceleration rms over all stagnation points, q b q
but it is also equal to the acceleration rms over the entirél™ 0 corresponds to absence ape 0 corresponds to pres-

field because Galilean transformations le@/eunchanged ence of statistical persistence of streamlifirgdhe sense that

even though they cause the rms statistics to be calculatdfgmes exist where streamlines are statistically fairly persis-

over different ensembles of points. Our DNS and KS calcut€nt and a privileged frame also exigtae one whergVy

lations ofa’ andV/, support this view. The Kolmogorov scal- =0) where this statistical persistence is maximized and the
ing of a’ (wherea’ is determined bye and 7) is La’/u’? statistical persistence hypothesis holda the remainder of
~(L/7)Y3 and has been corroboratgdsing 7~ (13/ €)% this paper we use DNS and KS to confirm and further ex-

where v is the kinematic viscosityby laboratory measure- Plore ,tzhe beh,avi(,)r oW, the Reynolds number scalings of
ments of acceleration statistics in isotropic turbulef@ein L&' /U’ andVs/u’, and the relation between these scalings

the range 908 Re, < 2000, where Reis the Taylor-length- via (4). An advantage of formulé&2) is that it can be used to
based Reynolds number. This scaling impliag/u’ calculateV, from Eulerian snapshots of DNS and KS veloc-

~(L/7)"¥3  which means that the movement of stagnationity_fields without having to track the motion of stagnation

: : N " : ; oints.
points (characterized byV,) is, statistically, increasingly P . . .
slower than that of fluid elementsharacterized by’) as the We use DNS data of nondecaying homogeneous isotropic

Reynolds number increases. In this statistical sense, Streaﬁp_ree-dlmensmnal mcompressm_le turbulence generated by a
andard spectral cod¢éhe magnitudes of a few low wave-

line curvature around stagnation points becomes increasin . . .
g b g umber modes are kept constamtith grid resolution of

ersistent and fluid element trajectories can follow the cur- . .
P J bout 2, (except for the highest Reynolds number where it is

vature of these streamlines for an increasingly significanf"b i q e st " int d their velocit
time. This interpretation assumes, as we confirm in our DN out 3 and compute s agnation points and their velocities
s in instantaneous velocity fields for Reanging from 57 to

and KS studies of isotropic turbulence which we report be-, .
low, that in the frame where the mean flow vanishes, the250 (53\?[11] for: tf;\le DNS Igun"rn]erlcal scEe(rjne ?.n((jj plc’liram-
average ol over the entire flow is 0, i.e{V¢=0. In other eters. We use the Newton-Raphson method to find all stag-

o : . nation points. This is an iterative method and requires start-
inertial frames{V,) is not zero but proportional to the veloc- . . . L .

) ! ing points, which have been taken over the DNS field’s entire
ity U of the frame relative to the one where the mean flow

) i i . : omain at points separated by the numerical grid width. For
vanishes, thus reducing the persistence of streamlines in sug ery Reynolds number, we calculdi) in various frames
other frames.(Stagnation points in these framé&s corre- '

spond to points with fluid velocity) in the frameF, where F. (alu) in frameF,, and alse’,Vy, the integral length scale

9 .
(V¢ =0. The average acceleration over these points in fram& andl 7 (we galctjlaie_; FHt-hVV u tof_ 0 db(taln;i. Olf (\)Ne
Fois(alU), i.e., the average af conditional on points where wrongly approximatea=-Vp, then we find(a|u)=0). Our

. D . results show for all our Reynolds numbers, thatu)
the fluid velocity isU, and is equal to the average accelera- oL Fi i h b
tion over the corresponding stagnation points in frafe ~ Y (u—(u)) [see Fig. 1a); note that we observe com-

which follows from(1) and is given by €V, Vu). The DNS  Ponents(a|u;) to be 0 only ifi # j] and that<V§>=,02 only
study which we report below indicates thaf U) e U for all W,he”, U=0 [see Fig. )] We also plotLa’/u’ and
Reynolds numbers tested, thus suggestinge U, a propor- V¢/(@'r,) as functions ofL/ 7 [see Fig. ic)]. In agreement
tionality relation confirmed by our DNS with a negative pro- with E{e.\”ﬁu,s/ D,';lf slftljd|?/(szsge[lo]_a_nld/gefergncesf_the;ém
portionality coefficient. In conclusion, a frame exists where W€ O0tainta /u (L/n)™ (e, q= ) and confirm(3)
the statistical persistence of streamlines is maximized anflVe" o4 DNS range of ReyEoIds, numbers. By the way, from
where the statistical persistence hypothesis is valid providetf| V) =—(Vs- Vu) and(a|U)=-(u'/2L)U one might expect
thatV. is much smaller than'’; this frame is the one where (Vs U with a constant of proportionality of decreasing ab-
the average o¥/s is zero, hence the one where the mean flowsolute value for increasing Reas we indeed observe. What
vanishes as argued 1jg]. is unexpectedbut is left for future investigationis the rate
DNS studies of three-dimensional isotropic turbulenceof this decrease; Figure() suggestgVy=-b(L/7)™*?U,
support the non-Kolmogorov scaliriga’ /u’?~(L/7)Y? in ~ whereb is a positive dimensionless universal constant. At
the range 46<Re, < 230 (see[10] and note that~u’3/L is  any rate, our DNS suggest thaty/u’ — 0 andV /u’ —0 as
approximately valid in such simulations with such ReynoldsRe, — . From (1), this implies that as Re— <, stagnation
numbers[8] where, alson~ (v*/€)Y4) and therefore imply points tend to become nonmoving zero-acceleration points.
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FIG. 1. Statistics of acceleration and stagnation point veldEityS). Solid triangles, Re=57; open squares, 83; solid squares, 120; open
circles, 180; solid circles, 250a) Conditional average of acceleration in the frafe (b) Average stagnation point velocity in the moving
frame with U relative toF,. (c) Rms acceleration and rms stagnation velocity; here we plot results of ten different snapshots from each
simulation.L/ » fluctuates in time, which explains the small scatter around its average.

To gain further insight intqVy and the validity of rela- in (1) scale with the inner length scalgand the small-scale
tions (4)~(6) and how they depend on specific properties ofvelocity u,~u’(5/L)P"Y2 This leads toLa’/u’2~ (Vi/u’)
the underlying flow, we now study synthetic velocity fields, X (L/7)*™? which generalize¢4) and to the statement that
namely, KS, where the spectrum and the time-dependended’ /u’2~ (L/7)3>P2*dis equivalent tov,/u’ ~ (L/ 5)% which
can be modified at wil[3-5,19. Such a study cannot be generalizes5) and (6).
carried out with DNS where the spectrum and time- KS runs withp=5/3, values ofL/7 ranging between 10
dependence of the flow are determined by the Navier-Stokegnd 10, and\=0, 0.5, 5, all lead tda|u)=0 and to(Vy)
dynamics and cannot be tampered with. An additional advar=0 in frameF,. In framesF, (Vg =-U. In KS, V¢ is uncor-
tage of KS is that the Lagrangian statistics it produces comrelated withVu so tha(Vs- Vu)=(Vy) -(Vu)=0 in agreement
pare well with various DNS and laboratory resusee[12]  with 0=(a|U)=—(V4-Vu). Runs withp=1.4,5/3,1.8, val-
and references therginFinally, because of the dramatic ues ofL/ 7 ranging between 10 and 4@&nd\=0, 0.5, 5 also
decimation in number of modes, it is possible with KS tolead toLa’/u’?~ (L/7)%P? [see Fig. 2a)] and therefore

explore scalings with./ 7 up to extremely largé/ 7 values =0, and toV{/u’=c wherec is a dimensionless constant
(here 16) which are out of reach of current DNS. independent ok / , which confirms thaj=0 [see Fig. 2b)].
In our KS we use three-dimensional turbulentlike velocity (In all our KS cases, & 1(P starting points for the Newton-
fields of the form(see[12] for fuller detail9 Raphson method are chosen over the same voluinehere
L is theL corresponding to the largekt » tried, keepingzn
Ni constant.
u= >, Acodk, - X + wnt) + Bysin(k, - X + wpt), The result(a|u)=0 reflects the lack of dynamics and re-
n=1 lated lack of correlations between Fourier modes in KS. Tur-

. L bulence dynamics seem to generate restoring accelerations
where N, is the number of modes, and the directions andhich are anticorrelated with velocitiésee Fig. 1a)].

orientations ofA, andB,, are chosen randomly and uncorre- g constant turns out to be an increasing function of
lated with the directions and orientations of all other WaVe(from our simulationscx\) and, as expecteds=0 for A
number modes.but perpepdicular.k_g The distribution of  _q Hence, in our KS isotropic turbulence where0, the
wave numbers is geometric, specifically= |ky|=kj1.07™%.  gprvigical persistence of streamlines is measured &yd is
The velocity field is incompressible by construction, and alsq, yirect reflection of the unsteadiness paramktén spite of
statistically stationary, homogeneous, and isotropic as show& being different from the Kolmogorov value —1/3, Richard-
by [3,4]. The amplitudes of the vectos, andB, are deter- o, exponenty=2d/D, (in particulary=3 for p=5/3) are
mined from the energy spectrufitk,) prescribed to be of - ghserved in KS but only for small values af[4,5] thus

the form confirming the view that these exponents require some sta-
' tistical persistence of streamlines to be realig&(
_3(p-u” Finally, it is worth recalling the Tennekes sweeping hy-
E(k) = - (7) . . N .
2(L/2m)Pt pothesis[13] which states that the dissipative eddies are
swept past an Eulerian observer in a time much shorter than
in the range zZ/L=k;<k=< ka:Zw/ n, andE(K)=0, other-  the time scale characterizing their own dynamics. The statis-
wise. The ratid_/ 5 is increased by increasiny,. Following  tical persistence hypothesis, the validity of which we confirm
[4,12], we setw,=AU’k,, for different values of the dimen- in this paper, states that there exists a frame wkeége=0
sionless parametex. andVg<u'; from (3), it therefore follows thaa’ <u’/,. In
From (1) we can derive a generalized form @) within  this sense, the accelerations are small, which is a way to
the framework of KS by assuming that the velocity gradientsrestate the Tennekes sweeping hypothesis. Indeed, the time
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FIG. 2. Statistics of acceleration and stagnation point veld&). () Rms acceleration scaling witt/ . For p=5/3; crosses\=0;
circles, 0.5; triangles, 5.0. Far=0.5; asterisksp=1.4; squares, 1.&Data sets for thesp are shifted with respect to the vertical axis by
factor 10 forp=1.4 and by 0.1 for 1.8.The slopes of the lines ar@-p)/2. (b) Variation of rms stagnation point velocity with/ 7.
Triangles,\=0.5; crosses\ =5.0.

needed for dissipative eddies to sweep past an Eulerian olaove with that same speed aW@~ w(k)/k~\u’ in agree-
server isyp/u’, which is therefore much smaller thaj/a’,  ment with our KS resultgj=0 andcx\.
the time which characterizes the dynamics of these eddies. The statistical persistence of streamlines seems to be a

This is the Tennekes sweeping hypothesis derived from thgsformulation and generalization of the Tennekes sweeping
statistical persistence of streamlines. Alternatively, stagnanypothesis in terms of streamline topology and its persis-
tion points mark regions of the flow where there is no sweeptence. Also, in conjunction with the kinematic relatiéh),
ing. According to[13], statistics which are taken so as t0 kq|mogorov dimensional analysis implies the existence of a
remove the sweeping effect depend only on the small-scalgyperent flow structure, namely, the persistent multiple-scale
dynamics, and this must therefore be the casé.oln Kol- stagnation point structure of the turbulence. Elsewl#&

maogorov turbL_JIence, the scaling .Of these small_—scalle dyna”{ﬂle argue that the mean lifetime of stagnation points is of the
ics is determined by and » which therefore impliesv, order of the integral time scale of the flow

~ (ev)4, in agreement witlg=-1/3 and the statistical per-
sistence hypothesis. In the present KS, however, sweeping of we acknowledge support from the Japanese Ministry of
smaller-scale turbulence by larger-scale eddies is absent, ag@jycation, Culture, Sports, Science and Technology; NERC;

stagnation points correspond to regions where zeros of Foysrant No. RGC/KHUST60120 and the Royal Society of
rier modes congregate. These Fourier modes move togethepndon.

with velocity w(k)/k. Hence, stagnation points typically
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