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We introduce the velocityVs of stagnation points as a means to characterize and measure statistical persis-
tence of streamlines. Using theoretical arguments, direct numerical simulationssDNSd, and kinematic simula-
tions sKSd of three-dimensional isotropic turbulence for different ratios of inner to outer length scalesL /h of
the self-similar range, we show that a frame exists where the averagekVsl=0, that the rms values of accelera-
tion, turbulent fluid velocity, andVs are related byLa8 /u82,sVs8 /u8dsL /hd2/3+q, and thatVs8 /u8,sL /hdq with
q=−1/3 in Kolmogorov turbulence,q=−1/6 in current DNS, andq=0 in our KS. The statistical persistence
hypothesis is closely related to the Tennekes sweeping hypothesis.
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Accelerations are central to fluid flow. Acceleration statis-
tics are central to turbulence dynamics, turbulent mixing, and
transport, and are also important where the turbulence con-
trols droplet growth, chemical reactions, combustion, and
other processesse.g.,f1,2gd. A key statistic is the acceleration
variance. Its value and scaling with Reynolds number are
essential to stochastic Lagrangian models and to Lagrangian
probability density-function models of turbulent diffusion if
these models are to incorporate finite Reynolds number ef-
fects f2g. In this paper we argue that the Reynolds number
scaling of the turbulence acceleration statistics, in particular
the acceleration variance, are also important as measures of
the statistical persistence of streamlines.

The persistence of streamlines is central to turbulent pair
diffusion f3–6g. It may also be important for one-particle
two-time Lagrangian turbulent statisticsf7g. If streamlines
are persistent enough in time, fluid element trajectories ap-
proximately follow them for significantly long times. Hence,
initially close fluid element pairs typically separate when
they encounter a region of highly curved diverging stream-
lines around a straining stagnation point. However, stream-
lines and their persistence are not Galilean invariant. This
issue motivatedf6g to suggest that the dependence of turbu-
lent diffusion on streamline structure fully emerges only in
the frame of reference where streamline persistence is maxi-
mized in some statistical sense. The assumption that such a
frame exists, and that the statistical persistence of the stream-
line topology in this frame is long enough to leave its defin-
ing imprint on turbulent diffusion, is termed “statistical per-
sistence hypothesisf6g.” This is a powerful hypothesis as it
leads to predictions supported by DNS and KS such asg
=2d/Ds ssee f5,6gd, which relate the Richardson pair-
diffusion exponent g sa Lagrangian quantityd in
d-dimensional turbulence to the fractal dimensionDs of the
spatial distribution of stagnation pointssan Eulerian quan-
tityd in the privileged frame of the statistical persistence hy-
pothesis. For isotropic turbulence,f6g argued that this frame

is the one where the mean fluid velocity vanishes. The pur-
pose of this paper is to mathematically formulate the statis-
tical persistence of streamlines as well as the statistical per-
sistence hypothesissstatistical persistence of streamlines
maximized in a well-chosen framed and to argue that, in
isotropic turbulence, they are both increasingly valid for in-
creasing Reynolds number.

It is the persistence of highly curved diverging stream-
lines around straining stagnation points that is important for
turbulent diffusion, and it is therefore critical to consider the
speed with which stagnation points move in space. Given an
arbitrary frame of reference, the fluid velocityu at a stagna-
tion pointsstd at timet vanishes, i.e.,uss,td=0, and remains
so for as long as this stagnation point exists. Hence, during
the stagnation point’s lifetime, 0=d/dtuss,td=]u /]t
+Vs·¹u at positions and timet, andVs;ds/dt is the stag-
nation point velocity. The fluid acceleration is defined asa
;]u /]t+u ·¹u at all positionsx and timest. Settingx=s,
we obtain

a = − Vs · ¹ u s1d

at any timet and any stagnation pointsstd of the flow. Using
Cramer’s rule, and assuming that dets]u /]x,]u /]y,]u /]zd
Þ0, this equality can be inverted,
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Note that relationss1d ands2d hold in any frame of reference.
What changes with frame is the number and positions of
stagnation pointsswhere these relations holdd.

These relations are kinematic and are the fundamental
link we use here between accelerations and the persistence of
stagnation points measured byVs. We formulate the concept
of statistical persistence of streamlines on the basis ofs1d.
Assuming, as is reasonable in fully developed isotropic tur-
bulencef8g, that the kinetic-energy dissipation rate per unit
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mass,e, scales asu83/L swhereu8 is the turbulence velocity
fluctuations rms, andL is an outer length scale of the turbu-
lenced and that the velocity gradients ins1d scale with the
inner length scaleh and the small-scale velocityuh

,sehd1/3, then the acceleration rmsa8 is related to the rms
Vs8 of Vs by

Vs8 , a8th, s3d

whereth,h /uh, or equivalently

La8/u82 , sVs8/u8dsL/hd2/3. s4d

Strictly, a8 is the acceleration rms over all stagnation points,
but it is also equal to the acceleration rms over the entire
field because Galilean transformations leavea8 unchanged
even though they cause the rms statistics to be calculated
over different ensembles of points. Our DNS and KS calcu-
lations ofa8 andVs8 support this view. The Kolmogorov scal-
ing of a8 swherea8 is determined bye and hd is La8 /u82

,sL /hd1/3 and has been corroboratedfusing h,sn3/ed1/4

wheren is the kinematic viscosityg by laboratory measure-
ments of acceleration statistics in isotropic turbulencef9g in
the range 900,Rel,2000, where Rel is the Taylor-length-
based Reynolds number. This scaling impliesVs8 /u8
,sL /hd−1/3, which means that the movement of stagnation
points scharacterized byVs8d is, statistically, increasingly
slower than that of fluid elementsscharacterized byu8d as the
Reynolds number increases. In this statistical sense, stream-
line curvature around stagnation points becomes increasingly
persistent and fluid element trajectories can follow the cur-
vature of these streamlines for an increasingly significant
time. This interpretation assumes, as we confirm in our DNS
and KS studies of isotropic turbulence which we report be-
low, that in the frame where the mean flow vanishes, the
average ofVs over the entire flow is 0, i.e.,kVsl=0. In other
inertial frames,kVsl is not zero but proportional to the veloc-
ity U of the frame relative to the one where the mean flow
vanishes, thus reducing the persistence of streamlines in such
other frames.sStagnation points in these framesF corre-
spond to points with fluid velocityU in the frameF0 where
kVsl=0. The average acceleration over these points in frame
F0 is kauUl, i.e., the average ofa conditional on points where
the fluid velocity isU, and is equal to the average accelera-
tion over the corresponding stagnation points in frameF
which follows froms1d and is given by −kVs·¹ul. The DNS
study which we report below indicates thatkauUl~U for all
Reynolds numbers tested, thus suggestingkVsl~U, a propor-
tionality relation confirmed by our DNS with a negative pro-
portionality coefficient.d In conclusion, a frame exists where
the statistical persistence of streamlines is maximized and
where the statistical persistence hypothesis is valid provided
that Vs8 is much smaller thanu8; this frame is the one where
the average ofVs is zero, hence the one where the mean flow
vanishes as argued byf6g.

DNS studies of three-dimensional isotropic turbulence
support the non-Kolmogorov scalingLa8 /u82,sL /hd1/2 in
the range 40,Rel,230 sseef10g and note thate,u83/L is
approximately valid in such simulations with such Reynolds
numbersf8g where, also,h,sn3/ed1/4d and therefore imply

Vs8 /u8,sL /hd−1/6 in that range. This also means that stagna-
tion points become increasingly persistent as Reynolds num-
ber increases, but at a rate slower than that of Kolmogorov
turbulence. Defining an exponent,q, by

La8/u82 , sL/hd2/3+q , Rel
1+3q/2 s5d

fwhere Rel,sL /hd2/3 has been usedg, it follows from s4d
that s5d is equivalent to

Vs8/u8 , sL/hdq , Rel
3q/2; s6d

q.0 corresponds to absence andq,0 corresponds to pres-
ence of statistical persistence of streamlinessin the sense that
frames exist where streamlines are statistically fairly persis-
tent and a privileged frame also existssthe one wherekVsl
=0d where this statistical persistence is maximized and the
statistical persistence hypothesis holdsd. In the remainder of
this paper we use DNS and KS to confirm and further ex-
plore the behavior ofVs, the Reynolds number scalings of
La8 /u82 and Vs8 /u8, and the relation between these scalings
via s4d. An advantage of formulas2d is that it can be used to
calculateVs from Eulerian snapshots of DNS and KS veloc-
ity fields without having to track the motion of stagnation
points.

We use DNS data of nondecaying homogeneous isotropic
three-dimensional incompressible turbulence generated by a
standard spectral codesthe magnitudes of a few low wave-
number modes are kept constantd with grid resolution of
about 2h sexcept for the highest Reynolds number where it is
about 3hd and compute stagnation points and their velocities
Vs in instantaneous velocity fields for Rel ranging from 57 to
250 ssee f11g for the DNS numerical scheme and param-
etersd. We use the Newton-Raphson method to find all stag-
nation points. This is an iterative method and requires start-
ing points, which have been taken over the DNS field’s entire
domain at points separated by the numerical grid width. For
every Reynolds number, we calculatekVsl in various frames
F, kauul in frameF0, and alsoa8,Vs8, the integral length scale
L and h swe calculate −=p+n¹2u to obtain a. If we
wrongly approximatea=−=p, then we findkauul=0d. Our
results show for all our Reynolds numbers, thatkauul
<−u8 /2Lsu−kuld fsee Fig. 1sad; note that we observe com-
ponentskai uujl to be 0 only if i Þ jg and thatkVsl=0 only
when U=0 fsee Fig. 1sbdg. We also plot La8 /u82 and
Vs8 / sa8thd as functions ofL /h fsee Fig. 1scdg. In agreement
with previous DNS studiessseef10g and references thereind
we obtainLa8 /u82,sL /hd1/2 si.e., q=−1/6d and confirms3d
over our DNS range of Reynolds numbers. By the way, from
kauUl=−kVs·¹ul andkauUl<−su8 /2LdU one might expect
kVsl~U with a constant of proportionality of decreasing ab-
solute value for increasing Rel, as we indeed observe. What
is unexpectedsbut is left for future investigationd is the rate
of this decrease; Figure 1sbd suggestskVsl=−bsL /hd−1/3U,
where b is a positive dimensionless universal constant. At
any rate, our DNS suggest thatkVsl /u8→0 andVs8 /u8→0 as
Rel→`. From s1d, this implies that as Rel→`, stagnation
points tend to become nonmoving zero-acceleration points.
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To gain further insight intokVsl and the validity of rela-
tions s4d–s6d and how they depend on specific properties of
the underlying flow, we now study synthetic velocity fields,
namely, KS, where the spectrum and the time-dependence
can be modified at willf3–5,12g. Such a study cannot be
carried out with DNS where the spectrum and time-
dependence of the flow are determined by the Navier-Stokes
dynamics and cannot be tampered with. An additional advan-
tage of KS is that the Lagrangian statistics it produces com-
pare well with various DNS and laboratory resultssseef12g
and references thereind. Finally, because of the dramatic
decimation in number of modes, it is possible with KS to
explore scalings withL /h up to extremely largeL /h values
shere 106d which are out of reach of current DNS.

In our KS we use three-dimensional turbulentlike velocity
fields of the formsseef12g for fuller detailsd

u = o
n=1

Nk

Ancosskn ·x + vntd + Bnsinskn ·x + vntd,

where Nk is the number of modes, and the directions and
orientations ofAn andBn are chosen randomly and uncorre-
lated with the directions and orientations of all other wave
number modes but perpendicular tokn. The distribution of
wave numbers is geometric, specificallykn;uknu=k11.07n−1.
The velocity field is incompressible by construction, and also
statistically stationary, homogeneous, and isotropic as shown
by f3,4g. The amplitudes of the vectorsAn andBn are deter-
mined from the energy spectrumEsknd prescribed to be of
the form

Eskd =
3sp − 1du82

2sL/2pdp−1k−p s7d

in the range 2p /L=k1økøkNk
=2p /h, andEskd=0, other-

wise. The ratioL /h is increased by increasingNk. Following
f4,12g, we setvn=lu8kn, for different values of the dimen-
sionless parameterl.

From s1d we can derive a generalized form ofs4d within
the framework of KS by assuming that the velocity gradients

in s1d scale with the inner length scaleh and the small-scale
velocity uh,u8sh /Ldp−1/2. This leads toLa8 /u82,sVs8 /u8d
3sL /hd3−p/2 which generalizess4d and to the statement that
La8 /u82,sL /hd3−p/2+q is equivalent toVs8 /u8,sL /hdq which
generalizess5d and s6d.

KS runs withp=5/3, values ofL /h ranging between 10
and 103, and l=0, 0.5, 5, all lead tokauul=0 and to kVsl
=0 in frameF0. In framesF, kVsl=−U. In KS, Vs is uncor-
related with¹u so thatkVs·¹ul=kVsl ·k¹ul=0 in agreement
with 0=kauUl=−kVs·=ul. Runs withp=1.4,5/3,1.8, val-
ues ofL /h ranging between 10 and 106, andl=0, 0.5, 5 also
lead toLa8 /u82,sL /hd3−p/2 fsee Fig. 2sadg and thereforeq
=0, and toVs8 /u8=c where c is a dimensionless constant
independent ofL /h, which confirms thatq=0 fsee Fig. 2sbdg.
sIn all our KS cases, 53106 starting points for the Newton-
Raphson method are chosen over the same volumeLs

3, where
Ls is theL corresponding to the largestL /h tried, keepingh
constant.d

The resultkauul=0 reflects the lack of dynamics and re-
lated lack of correlations between Fourier modes in KS. Tur-
bulence dynamics seem to generate restoring accelerations
which are anticorrelated with velocitiesfsee Fig. 1sadg.

The constantc turns out to be an increasing function ofl
sfrom our simulations,c~ld and, as expected,c=0 for l
=0. Hence, in our KS isotropic turbulence whereq=0, the
statistical persistence of streamlines is measured byc and is
a direct reflection of the unsteadiness parameterl. In spite of
q being different from the Kolmogorov value −1/3, Richard-
son exponentsg=2d/Ds sin particularg=3 for p=5/3d are
observed in KS but only for small values ofl f4,5g thus
confirming the view that these exponents require some sta-
tistical persistence of streamlines to be realizedf6g.

Finally, it is worth recalling the Tennekes sweeping hy-
pothesisf13g which states that the dissipative eddies are
swept past an Eulerian observer in a time much shorter than
the time scale characterizing their own dynamics. The statis-
tical persistence hypothesis, the validity of which we confirm
in this paper, states that there exists a frame wherekVsl=0
andVs8!u8; from s3d, it therefore follows thata8!u8 /th. In
this sense, the accelerations are small, which is a way to
restate the Tennekes sweeping hypothesis. Indeed, the time

FIG. 1. Statistics of acceleration and stagnation point velocitysDNSd. Solid triangles, Rel=57; open squares, 83; solid squares, 120; open
circles, 180; solid circles, 250.sad Conditional average of acceleration in the frameF0. sbd Average stagnation point velocity in the moving
frame with U relative toF0. scd Rms acceleration and rms stagnation velocity; here we plot results of ten different snapshots from each
simulation.L /h fluctuates in time, which explains the small scatter around its average.
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needed for dissipative eddies to sweep past an Eulerian ob-
server ish /u8, which is therefore much smaller thanuh /a8,
the time which characterizes the dynamics of these eddies.
This is the Tennekes sweeping hypothesis derived from the
statistical persistence of streamlines. Alternatively, stagna-
tion points mark regions of the flow where there is no sweep-
ing. According tof13g, statistics which are taken so as to
remove the sweeping effect depend only on the small-scale
dynamics, and this must therefore be the case ofVs8. In Kol-
mogorov turbulence, the scaling of these small-scale dynam-
ics is determined bye and n which therefore impliesVs8
,send1/4, in agreement withq=−1/3 and the statistical per-
sistence hypothesis. In the present KS, however, sweeping of
smaller-scale turbulence by larger-scale eddies is absent, and
stagnation points correspond to regions where zeros of Fou-
rier modes congregate. These Fourier modes move together
with velocity vskd /k. Hence, stagnation points typically

move with that same speed andVs8,vskd /k,lu8 in agree-
ment with our KS resultsq=0 andc~l.

The statistical persistence of streamlines seems to be a
reformulation and generalization of the Tennekes sweeping
hypothesis in terms of streamline topology and its persis-
tence. Also, in conjunction with the kinematic relations1d,
Kolmogorov dimensional analysis implies the existence of a
coherent flow structure, namely, the persistent multiple-scale
stagnation point structure of the turbulence. Elsewheref14g
we argue that the mean lifetime of stagnation points is of the
order of the integral time scale of the flow.
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FIG. 2. Statistics of acceleration and stagnation point velocitysKSd. sad Rms acceleration scaling withL /h. For p=5/3; crosses,l=0;
circles, 0.5; triangles, 5.0. Forl=0.5; asterisks,p=1.4; squares, 1.8.sData sets for thesep are shifted with respect to the vertical axis by
factor 10 for p=1.4 and by 0.1 for 1.8.d The slopes of the lines ares3−pd /2. sbd Variation of rms stagnation point velocity withL /h.
Triangles,l=0.5; crosses,l=5.0.
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